Al-rich chondrules (ARCs) are a rare constituent of chondrites. They have relatively high bulk Al$_2$O$_3$ content (> 10 wt%), which is due to the presence of Al-rich phases, such as plagioclase, spinel, Al-rich glass etc. [1]. ARCs share some chemical and petrologic characteristics with Ca, Al-rich inclusions (CAIs), and may represent a genetic link between ferromagnesian chondrules and CAIs.

Twelve ARCs were found in unequilibrated ordinary chondrites (UOCs) GRV 022410 (H4), GRV 032722 (H3.7), GRV 020104 (H3.4), GRV 050016 (H3.7), GRV 050009 (H3.6), and Julesburg (L3.6) [2]. They contain bulk Al$_2$O$_3$ ~ 16-33 wt% and exhibit igneous textures comprised of olivine, diopside, plagioclase, spinel, and glass. In situ SIMS analyses show that ARCs have oxygen isotopic compositions (δ^{18}O ~ -6.1‰ ~ 7.1‰; δ^{17}O ~ -4.5‰ ~ 5.1‰) close to ferromagnesian chondrules but far more depleted in 16O than CAIs (δ^{18}O ~ -40‰; δ^{17}O ~ -40‰). Most ARCs plot close to the TF line, and a few between the TF and CCAM lines. All ARCs define a line with a slope of ~ 0.79 ± 0.07. They are 16O-poor relative to their counterparts in [3] but similar to those in [4]. The oxygen isotope data indicate that ARCs from UOCs do not represent a simple mixing product of ferromagnesian chondrules and CAIs. Instead, they probably experienced higher-degree oxygen isotopes exchange with 16O-poor nebular gas reservoir during multiple heating events.

Acknowledgement: Samples used in this study are provided by the Polar Research Institute of China. This work was supported by the National NSF of China (Grant No. 41173076 and 10921063) and by the Minor Planet Foundation of China.